1,653,421 research outputs found

    Cell shape recognition by colloidal cell imprints: Energy of the cell-imprint interaction

    Get PDF
    The results presented in this study are aimed at the theoretical estimate of the interactions between a spherical microbial cell and the colloidal cell imprints in terms of the Derjaguin, Landau, Vervey, and Overbeek (DLVO) surface forces. We adapted the Derjaguin approximation to take into account the geometry factor in the colloidal interaction between a spherical target particle and a hemispherical shell at two different orientations with respect to each other. We took into account only classical DLVO surface forces, i.e., the van der Waals and the electric double layer forces, in the interaction of a spherical target cell and a hemispherical shell as a function of their size ratio, mutual orientation, distance between their surfaces, their respective surface potentials, and the ionic strength of the aqueous solution. We found that the calculated interaction energies are several orders higher when match and recognition between the target cell and the target cell imprint is achieved. Our analysis revealed that the recognition effect of the hemispherical shell towards the target microsphere comes from the greatly increased surface contact area when a full match of their size and shape is produced. When the interaction between the surfaces of the hemishell and the target cell is attractive, the recognition greatly amplifies the attraction and this increases the likelihood of them to bind strongly. However, if the surface interaction between the cell and the imprint is repulsive, the shape and size match makes this interaction even more repulsive and thus decreases the likelihood of binding. These results show that the surface chemistry of the target cells and their colloidal imprints is very important in controlling the outcome of the interaction, while the shape recognition only amplifies the interaction. In the case of nonmonotonous surface-to-surface interaction we discovered some interesting interplay between the effects of shape match and surface chemistry which is discussed in the paper. The results from this study establish the theoretical basis of cell shape recognition by colloidal cell imprints which, combined with cell killing strategies, could lead to an alternative class of cell shape selective antimicrobials, antiviral, and potentially anticancer therapies

    Functional modules in the Arabidopsis core cell cycle binary protein-protein interaction network

    Get PDF
    As in other eukaryotes, cell division in plants is highly conserved and regulated by cyclin-dependent kinases (CDKs) that are themselves predominantly regulated at the posttranscriptional level by their association with proteins such as cyclins. Although over the last years the knowledge of the plant cell cycle has considerably increased, little is known on the assembly and regulation of the different CDK complexes. To map protein-protein interactions between core cell cycle proteins of Arabidopsis thaliana, a binary protein-protein interactome network was generated using two complementary high-throughput interaction assays, yeast two-hybrid and bimolecular fluorescence complementation. Pairwise interactions among 58 core cell cycle proteins were tested, resulting in 357 interactions, of which 293 have not been reported before. Integration of the binary interaction results with cell cycle phase-dependent expression information and localization data allowed the construction of a dynamic interaction network. The obtained interaction map constitutes a framework for further in-depth analysis of the cell cycle machinery

    Human Myoblast and Mesenchymal Stem Cell Interactions Visualized by Videomicroscopy.

    Get PDF
    Muscle-derived progenitor cell (myoblast) therapy has promise for the treatment of denervated, weakened, and fibrotic muscle. The best methods for injecting myoblasts to promote fusion and retention have yet to be determined, however. Mesenchymal stem/stromal cells have also been reported to have beneficial effects in restoring damaged tissue, through increasing vascularization and reducing inflammation. The interactions between human primary skeletal myoblasts and bone marrow-derived mesenchymal stem/stromal cells were examined using time-lapse images put into video format. Of interest, there is a high degree of cell-to-cell interaction with microparticles transferring between both cell types, and formation of nanotubules to bridge cytoplasmic contents between the two types of cell. This model provides an in vitro platform for examining mechanisms for cell-to-cell interaction preceding myoblast fusion

    Natural killer cells attenuate cytomegalovirus-induced hearing loss in mice

    Get PDF
    <div><p>Congenital cytomegalovirus (CMV) infection is the most common non-hereditary cause of sensorineural hearing loss (SNHL) yet the mechanisms of hearing loss remain obscure. Natural Killer (NK) cells play a critical role in regulating murine CMV infection via NK cell recognition of the Ly49H cell surface receptor of the viral-encoded m157 ligand expressed at the infected cell surface. This Ly49H NK receptor/m157 ligand interaction has been found to mediate host resistance to CMV in the spleen, and lung, but is much less effective in the liver, so it is not known if this interaction is important in the context of SNHL. Using a murine model for CMV-induced labyrinthitis, we have demonstrated that the Ly49H/m157 interaction mediates host resistance in the temporal bone. BALB/c mice, which lack functional Ly49H, inoculated with mCMV at post-natal day 3 developed profound hearing loss and significant outer hair cell loss by 28 days of life. In contrast, C57BL/6 mice, competent for the Ly49H/m157 interaction, had minimal hearing loss and attenuated outer hair cell loss with the same mCMV dose. Administration of Ly49H blocking antibody or inoculation with a mCMV viral strain deleted for the m157 gene rendered the previously resistant C57BL/6 mouse strain susceptible to hearing loss to a similar extent as the BALB/c mouse strain indicating a direct role of the Ly49H/m157 interaction in mCMV-dependent hearing loss. Additionally, NK cell recruitment to sites of infection was evident in the temporal bone of inoculated susceptible mouse strains. These results demonstrate participation of NK cells in protection from CMV-induced labyrinthitis and SNHL in mice.</p></div

    Elastic interaction between colloidal particles in confined nematic liquid crystals

    Full text link
    The theory of elastic interaction of micron size axially symmetric colloidal particles immersed into confined nematic liquid crystal has been proposed. General formulas are obtained for the self energy of one colloidal particle and interaction energy between two particles in arbitrary confined NLC with strong anchoring condition on the bounding surface. Particular cases of dipole-dipole interaction in the homeotropic and planar nematic cell with thickness LL are considered and found to be exponentially screened on far distances with decay length λdd=Lπ\lambda_{dd}=\frac{L}{\pi}. It is predicted that bounding surfaces in the planar cell crucially change the attraction and repulsion zones of usual dipole-dipole interaction. As well it is predicted that \textit{the decay length} in quadrupolar interaction is \textit{two times smaller} than for the dipolar case.Comment: 4 pages,2 figure
    • …
    corecore